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This paper is a continuation of (Ref. 1).

tion problem of a superconducting thin film in a magnetic field.
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ABSTRACT 1;8 Léﬁ?()

In this paper, we calculate the critical field
of a superconducting thin film in the case of a second-
order phase tranmsition with the help of a theory
developed in a previous paper (Ref. 1). The correction
term proportional to (At)g/2 is obtained (the magnetic
field is assumed to be parallel to the surface of the

film, At = 1 - irﬁ. The results obtained agree with

the experimental works of Douglass-Blumberg apd Tgxen.
NGNS

I. INTRODUCTION

* Received September 9, 1963.

numbers in the margin indicate pagination in the original
foreign text.

We shall further discuss
the critical field of a superconducting thin film in the case of a second
order phase transition and compare the theoretical results with experiment.

A great deal of research has already been performed on the phése transi-
It was

London (Ref. 2) who first calculated the critical field of a superconducting



film according to his own theory. For a very thin film (d << §p(T)), the
1)

result is

n(TZ
-3 (1)

ch(T)
Later, Ginzburg-Landau (Ref. 3) (this will be abbreviated as GL hereafter)
studied this problem in further detail, in their theory of superconduc-
tivity in a strong magnetic field. The theory of GL expects the follow-
ing: The phase transition of a thin film with thickness d < dc(dc =-§§ 60)

in a magnetic field is a second-order phase transition. The critical mag-

netic field of a second-~order phase transition is

fdo(T)

fﬁm(T) (2)
However, in recent years quite a few experimental results (Ref. 4-6)
showed that for films which are thin enough, not only equation (1) of
London's theory, but also equation (2) of the GL theory are innaccurate.
For example, not long ago, Douglass-Blumberg (Ref. 6) (this will be abbre-
viated as DB hereafter) made extensive and accurate measurements of the
critical magnetic field of a series of Sn film samples with thicknesses
from 1.9 x 10_6 cm to 4.3 x 10_5 cm. They expressed the experimental re-

sults by the following empirical formula (in the vicinity of T.):

Hc(gauss) = 1510§L9;’;d—)- (AN (1L + eAr), (3)
where 6(0,d) and & are coefficients independent of temperature; At =1 - %—.
c

8§(0,d) given by DB varies considerably with d. When 4 =

§(0,d) = 5.1 x 10—6 em ( this is the generally accepted penetration depth

of a large sample of SN at T = 0°K),but 6(0,d) increases very rapidly as d

(1)

Notation used in this paper is the same as that used in (Ref. 1).
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decreases. As to ¢, DB only gave the results for some of the sam- /992
ples and the values lie between O - 0.31, and also clearly vary with d.

These results cannot be explained by the GL theory. Since in the GL
theory, 60 is the penetration depth of a large sample and is independent of
the film thickness, the critical magnetic film of a thin film can only vary
as H, -~ d_l. The results of DB, however, show that the variation of H.
with d is faster than d_l. Numerically, for a thin film the value of
§(0,d) measured by DB is much greater than the value of the corresponding
quantity 83(0) in the GL theory. For example, for a thin film with thick-
ness about 3 x 10—5 cm, the value from the GL theory is only one quarter
of that of the experiment. As for e, according to the GL theory (the par-
ameter used in the GL theory according to the formula obtained by Gor'kov),
it is not difficult to prove that ¢ = 0.75. This does not agree qualita-
tively with experiment.

The disagreement between the theory and experiment impelled many
authors (Ref. 5-3) to conduct new research on this problem. They realized
that the cause of the disagreement between theory and experiment is that
when the film thickness is small enough (d < go), even in the close vicin-
ity of T., the relations j(r) and A(r) are non-linear. They attempted to
make appropriate corrections in the London equation or GL equation, hoping
to introduce a non-local effect into the local theory of London or GL.

For example, Tinkham (Ref. 7) thought that in the case of a thin film the
penetration depth §3(T) in equation (1) or equation (2) must be replaced

by "the effective penetration depth of the thin film",



8T, d) = 3(T) (1 +§6'49 (4)
DB (Ref. 6) pointed out that if equation (2) is corrected in the above man-
ner, the relation between H, and d agrees with experiment. Ittner (Ref.
5) also did a similar thing. In reference (8), Toxen applied the GL theory
and expressed H. as a function of the magnetic moment. The magnetic moment
is, in turn, calculated from a formula given by the non-local Pippard-
Schrieffer theory (Ref. 9). Combining these two completely different
theories, it is found that a result which agrees with experiment can be ob~-
tained. However, all these works have a common defect - that is, the cor-
rection made in the GL theory does not have a theoretical basis.

In reference (1), we formulated a theory for the superconductivity of
thin films in a strong magnetic field and calculated the critical magnetic
field of a superconducting thin film in the case of a second-order phase
transition. In this paper, we have improved the calculation of the criti-
cal magnetic field in (Ref. 1) and have obtained an expression (the second
section) for the critical magnetic field containing the (At)3/2 correction
term. Comparing the theoretical results with the experimental data of DB
(Ref. 6) and Toxen (Ref. 7), we find the agreement very satisfactory (See
third section).

II. THE CRITICAL MAGNETIC FIELD

In Section VII of reference (1), we discussed the phase transition
problem of a superconducting film in a magnetic field and reached the fol-
lowing conclusion. The phase transition of a superconducting film with
d < d, in a magnetic field is a second-order one (Ref. 1). The critical
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magnetic field of a second-order phase transition is determined by the fol-

lowing equation:

K—2d=0, (5)

where

K= leler 3 [ a141820, 2.0, 1), (6)
ég(r,r') in equation (6) is Green's function of the normal electron in the

magnetic field and is given by the expression

ich A(l,) KR c‘.‘.(l r) +

ol

HJI JmG%(r, l)“ﬁ A g—c?.(l )'—‘EA( my
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+m dl ém dsG(r, 1) 22 ich B ac al cl, m)'“" ACimy) ai, GUm, ) X
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According to the result of reference (1), A(ry) = Ho(rl -4) + A(rl), and
Z\(rl) is proportional to A2, Therefore, for the calculation of the second-

order phase transition critical magnetic field, we can set A(rl) =0, i.e.,
Br, 1) = 2e, 1) + B faca(e, D — ) 262, 0 + |

)

’ +(‘.ffc)2”dldmca(r, l)(l;—-d)%c a, m)(ml—d)———c (m,r") + |
T (7)

+ (P2 ([{ 1 am 2062Gr, 1X0:-0) 2 6201, m)m=) 222, ) X

X (g—4a) —a—-G‘L(s, r)+
. a.l'z



(m, 8) X

+ (lfﬁﬂsy HH dl dm ds dzG(r, 1)(1,—2) 5‘3— GLd, m)(m 4

mc
X (5 — d) -2 63(s, z)(z, — 4)-0- 6%z, r') + (7 Cont'd)
: a‘; az;
+ oo,
In (Ref. 1), we substitute (7) into (6), neglect terms containing Hg
and higher powers of Hc’ and obtain the second-order phase transition

critical magnetic field as follows:

He _ 3BT & _1 (8)
Heu & 3 0(s)’

where @1(0) is given by equation (39a2) in (Ref. 1). In obtaining this re-
sult, we replace the temperature factors appearing in the equation, T and

T.
1n =S respectively, by T, and At. H_, is given by (8) and is proportional

T? c
to (At)l/z.

In order to explain the experiment of DB, we have to find the expres-

3/2

sion of the critical magnetic field which is accurate to (At) . Here

we need not only more accurate approximations for the temperature factors
T

T and ln-Eg, but also we must keep the Hé term in the expansion of K with

respect to H,. K can be expressed as, which is accurate to the Hg term,

K=K,+K1+K.,? (9)
where
= telkr X ({1 encia. meq, o).
Ky=2 ("f’”’) IkTZI -Sdlds dm dr,G%(1, 1)G(1, 8)(s — d) X»
% 5@- GUu(s, mY(m — d) 2—G2(m, r) +
2 ’ 994

+ ('_;7’%)’ lelkT )_“_,j Sdl 28 dm driG2(L, )(s — &) X o

Glu(m, r),

x -9 oy —
ah GLU(s, r)GL ...(l m)(my — 4) am,



K,=2 (rc’ill() lglkT 2 s Idl dm ds dz di dr;G A, 8)(s—4d) X

B 6o(s, G, m)(my — &) 20— GLu(m, 2)(z, — &) X

52 m

O G0z, A) (M —d) O_G (A, ) +
6..1 61;

+2 (’-”E’E)' lel&T > I : -jdldm ds dz dh dr,GL(l, 8)(si — d) X
mc - )

X BQ— GL(s, r)G2u(l, m) (my — d) -Q- G2u(m, z)(z, — d) X

x : Gu(z, &) (A — d) -——G"_..(A r) +

2

+z(ﬁ”l€) lel&T Zg Sdldmdsdzdldnc (l 8)(s — d) X
mc -

x 2 Gi(s, m) (my, — d) -Q— GL(m, r) X
a.& m

X 6Lu(l, 2)(z — d) b G oz, ) (4 — d) 5 G"_..(A ).

In equation (9), terms containing odd powers of H, are zero, and have been
discarded. Kp and K, are calculated in (Ref. 1):

= 24 [iglN(o) In =< 4 1] (10)

- — 31c(5) B HEE Te 4
K; leln(0) 2 £ Pl OB

(11)
where y = In C; C is the Euler constant which is 0.5772. For purposes of
convenience, the expression for ¢1(0) is rewritten as:

0(6) = —32 i—;w"(n:-l)
! 31C(5) = @+’

%(ZI:-l)=%[6(2111)_211IF(ZI:-I)]’ (12)

G(n) = 37 T




) _ > 1 _ 17 g — 1 ] /995
F(q) '_o-—--z”_'_l[l (2n+ 1718 o + D)’ —
g = 0.364251-:
| €0 Tec ; | (12 Cont'd)
Y ﬁt/n (L] :
= 0.182 —"
eo krc ch

Functions F(n) and G(n), when n < 1, can be expressed as (See the Appendix)

1 1 1 7 4
=t 4+2(C+h2—1)+L+0@G"
F(p) 2]nq+2( 4+ In ) 12 @,

1 (13)

= 1 1 1 .
= _ 1 il _l(c+m2+1)p+—=
6@ 1 2 7n /] 2 ( 7 36

7+ o(p). |
6 !

Therefore, when ¢ < 1, @ (0) can be approximately expressed as
{

sy =32 [ 1 16a 1 20 +1 |
1(2) 31£(5) {g(zz+1)’ n’,..(:u+1)t‘[ln c +(C+l"2)+;

e} '

The first summation inside the braces can easily be calculated. The second

sum itself makes a smaller contribution than the first one and converges
very rapidly; therefore, it is sufficient to consider the first term only.

Therefore we obtain, for o < 1,

- 31{(5)e’% Hy d! (Lc_) — 0.18524 [z 29 + In Lo Te
K, lgInN(0) nyh‘x-" T {1' ) 9 ) " 24 +in +

-

In the vicinity of T,, expanding with respect to At =1 -

(14)

v—]'l-i

to the first
c

order of At, Ky can be expressed as

Ka = —1gIN(0) BECLEEML (4 _ ()1 + 1 + e(m)]av],

my B (15)
where T : 1 oy
}1(3) == 0.185 x (2.29 + ln; + - '), 1
5,185 (1.29+ln>1 + ) ‘
0.185x{1. el (LR I .
e(x) = r , (16)
[1—p()]
’ = -2—-4
N & !




T
Expanding 1n EE with respect to At to the second order of At, Ky can be

written as

Ko=2d {1 + |g|N(0)At(1 + 92'—)} " (17)

As to the integration K,, it can be obtained by a method similar to the

one used in (Ref. 1) to calculate KZ' After somewhat complicated calcula-

tions we obtain, for o << 1,

K= Lelv) 25 (2) ey (Le, | o

where B is a constant and is calculated as B = 12.5.
Substituting (15)-(18) into (9) and (5) we obtain an equation for de-
termining the critical magnetic field H_ of a thin film in the case of

second-order phase tramnsition:
o + il + aHE =0, (19)

|
where

a; = Al(l +A“),
2

ay = — 31:(5) ezed’ [1 —

G BN+ 1+ a@]ard, | (20)

=3 —B_ (i ' . |
% 2xy® \bc b |

From (19) H, can be solved immediately:

ke 2.36 |
He = (T) £ [1 — p(x) (@1 + ea 2

where

€ f——-e,—-?—O.ZS,
(22)
0.0136B. 0.163
1 —p(HDP  2[1—p(H)F

€3

See equation (16) for the definitions of €y and u(x). We should note that

when ¢ < 1, &(o) =1 - Ll(%é;). It is easy to see that the (At)l/z—order
0

9



term in equation (21) agrees with the HC given in (Ref. 1). (See form-
ula (8) of this paper.)
IIT. COMPARISON OF THEORY AND EXPERIMENT

In the above section we found the critical magnetic field (21) of a
superconducting thin film at a temperature near T, for second-order phase
transition. This expression is applicable, at least to films satisfying
the conditions for the thickness

|
o=03642% < " (23a)

o .
and

0.36p,(2d) 22 > 1’ \
& .

(23b)

(Condition (23b) is discussed in (Ref. 1)). With Sn, for
g~ 2.3 x 107° cm, vg ~ 0.65 x 108 cm/sec (Ref. 11). It is estimated

c -6 -5 rﬁl)* )

rom (23) that: 10 cm << 2d < 6.3 x 10 C . In the experiment of
DB, the thickness of Sn films ranged from 1.9 x 10_5 cm to 4.3 x 10_5 cm,
and falls within the range where equation (21) is applicable.

In order to compare with the DB experiment, we express (21) in the

form of (3). Obviously, the parameter §(0,d) in (3) and the theoretical

expression of € are given by

*
Note: Illegible in the original breign text,

10



/997
1)

2.365c (24)
15102 (24)V2 [1 — p(=) IV

and (22), vespectively. The experimental points of DB and the §(0,d)

8(0,4d) =

curve calculated according to (24) at € = 2.0 X 10-5 cm are shown in
Figure 1. For purposes of comparison, the result (2) from the GL theory

is also drawn, using the relations H,y = 1.74 Hcﬁ (0) At and

S0 = ‘6L(0)//EZE and choosing the values of § (0,d) obtained at

HCM = 307 gauss (Ref. 12) and 67(0) = 3.55 x 10-6 cm. It is a horizontal
line. It can be seen that the result derived in our paper agrees very well
with experiment. We should note that we are comparing the purely theo-

retical values with the absolute experimental values and not the scaled

values. The £ value we used, EO = 2.0 x 10_5 cm, agrees reasonably well

with 60 = 2.3 x 10—5 cm given by reference (11) and EO = 2.1 x 10_5 cm

(Ref. 13) given by Faber-Pippard.

1/2 /2

We would like to point out that the factor ¢;"“ (o) = a - u(x))1
in (24) plays an important role in making the theory agree with experiment.
In order to explain this point, we plotted by means of a broken line (b),
the 6(0,d) ~ d curve (taking &O =2.0x lO—5 cm) calculated according to

2.36%c
1510 e£Y? (24)V2

. 8(0, d) = (24a)

This agrees with the experiment only when d is very small. However when one

¢y

More generally, from equation (8), we obtain

2.36R¢ 1
a0, ) = 1510 ¢ 237 (2d)'A $.(0)’

This formula is valid for all films with 2d >> 2d*. Calculation shows

that it agrees with (24) within the range of film thickness used in the DB
experiment,

11



adjusts the value of 50, no agreement with experiment can be obtained.

From this, it can be seen that the formula for the critical field of a

3/

thin film (HC ~d 2) corresponding to (24a) is valid only when the film

thickness is very small.

/2

The theoretical curve of the coefficient ¢ of the (At)_3 term of

the critical magnetic field, HC [according to formula (22) and also taking
60 = 2.0 x 10_5 cm] and the experimental data of DB are shown in Figure 2.

It can be seen that the ¢ value given by this paper varies considerably

with d.

vvvvvvvvvvvvvvvvvvv

N ik i A i

8(0, 4) (10~ cm)
/ |

— T a )
Thickness 2d (10—6 cm)
Figure 1

Comparison of the Theoretical Values and Experimental Data of DB
of §(0,d) for Sn Films; "+" Represents DB Experimental Points. /ggg

As d decreases, ¢ increases rapidly. These characteristics agree with the
DB experiment in their qualitative aspect. However, quantitatively speak-

ing, the ¢ values given by this paper are larger than the DB experimental

12



1.0
05}
H
or
|
-0S 1 1 J
0 3 10 15

Thickness 2 d (lO_6 cm)

Figure 2

Variation of e Values with the Thickness 2d for Sn Film;
"+" Represents DB Experimental Points,

values.

The (At)3/2 term of the critical magnetic field is very small, and
its contribution to the absolute value of the critical magnetic field is
in general below 10%. Therefore, the values of ¢ determined by DB from
their experimental data on the critical field may have a larger error.
Another factor which should be pointed out is that, in the theory of this
paper, we did not take into consideration the effect of impurities and
stress, and we also assume that the energy gap is constant. Further
studies have to be carried out on the effect of these factors to the
(At)3/2—order term of the critical field. However, the above qualita-
tive results, at least, explain the following two points: (1) The
fourth-order term of the field is very important in the contribution to
the € values; (2) The non-local effect of the film plays a decisive
role in determining the variation of € with d. It is because we not only

included the 4th-order term of the field in the calculation, but also took

13



into consideration the non-local effect of the film, that we find that ¢
increases rapidly with decreasing d. If the local approximation of Gor'kov
is used in the calculation, then the € obtained would not change with d
even if the 4th-order term of the field is included.

In order to test formula (21), we compare it with the measurement re-
sults of Toxen (Ref. 4) on the critical magnetic field of In film. 1In
(Ref. 8), Toxen plotted on a figure the experimental points of the ratio
of the critical magnetic field, H,, of In film and the critical magnetic
field, Hcy, of a large sample of In at T = 0.9 T, and T = 0.95 Tc' For
the calculation of gﬁﬁ from the theoretical formula (21) of the film
critical magnetic field, we use the material concerning the critical mag-
netic field of a large sample of In given by Muench (Ref. 12). According
to the empirical formula given by Muench, the critical magnetic field of
a large sample of In near Tc can be expressed as

Hey = 530A¢(1 — 0.395A¢), (25)

From (21) and (25), we obtain
He _ 2.36 hc (Ar)™2
Hou 530 ¢ BR2A(1—p() IR (26)
X [1+(e+04)ar), |

We calculated ﬁs;'in the range of the second-order phase transition accord-
cM

ing to (26). For good agreement of theory with experiment, £p ought to be

selected as £y = 2.3 x 10—5 cm. This agrees with £5 = 2.6 x 10_5 cm re-

quired in Toxen's own work.

In Figure 3, we have drawn two theoretical curves of ﬁg- ~ d at /999
cM

At = 0.10 and At = 0.05 (theoretical curves are drawn only for the case of
the second-order phase transition region) and the experimental points read
from Toxen's figure. For comparison, the results of the GL theory (2) are

14
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20

b
& W\ O NROVO |,

Hel/Hceu

Half Thickness d (10_6

cm)
Figure 3

H
The Variation of'ﬁg— Values with d for In Film and the
cM

Experimental Points of Toxen

(a) Theoretical curve of this paper At = 0.05;

(b) Theoretical curve of this paper At = 0.10
(c) Theoretical curve of GL At = 0.05;
(d) Theoretical curve of GL At = 0.10;
"+" Experimental points of Toxen At = 0.05;
"." Experimental points of Toxen At = 0.10

8 -
also drawn on the figure, using §g = ~LO) and taking §1,(0) = 3.5 x 10 6

V2At
cm (Ref. 8) at At = 0.10 and At = 0.05. The agreement of our theoretical
values with the experimental values of Toxen is very satisfactory.
APPENDIX

Expansions of the Functions F(n) and G(n)

The definitions of functions F(n) and G(n) are as follows:

1 - 1

15



_ 1 41
¢(n) :sr': (Zn+1)° ¢ ‘ 2n + Dy (A2)

To obtain their expansions at large n, we can find their Taylor ex-
pansion in % . We shall omit this very simple calculation. Here we
shall only discuss the expansions of F(n) and G(n) for small n.

The expansions of F(n) and G(n) at small n can be obtained by various
methods. We will introduce one of them.

First, let us take F(n). LetX = %3 then

F = F() = > —= [1_(2’.4—1)"“;“ ! ]

s @n+ Dx A (2n + =l
‘ (A3)
z
. g5
new 4 l‘. z l x

where the single-valued branch of the multivalued function tg_l'ﬁ is de-

termined as follows, Make a branch cut on the z-plane from i) to - i), and
z + iA .

set argq;f:—Ix) = 0 when z = + «; {rn} is the rectangular closed path as

indicated in Figure 4.

For the single-valued branch of tg—l-% defined above, it is very easy

to prove that when |z| is large
(-5 )~ 3+ ()
Moreover, it is not difficult to see that on the closed path {I'n}, tg-%
is bounded. Therefore, as n ~ ® , the contribution from the integration

over BC, CD and DA approaches zero, and only the integral along AB is left.

Therefore, (A.3) can be converted to

b4

ety — /1000
FQ}) = %L 2 (1 _i.g-il.),zz, (A.5)

z x z

16



z plane

ik

R

-+
<
P

2n-1 |2n41 *

Figure 4
Closed Path I'n

The heavy black line connecting iA and -iA
in the figure indicates the branch cut.

where the integration path is along the imaginary axis on the right-hand

side of the cut. Nothing the characteristics of the single-valued branch

of tg_l A defined above along the imaginary axis, we can see that

y

1 (h_ 1 . | -
PO =L 22y L Zun s L2 (g k1), &9

oy 20Jo 2 A 2202 .

Each integral in (A.5) is separately calculated below. The first

term in (A.5) is

y
xth_ - - s\’
1,=LS 24y=-1-|nmi—-1-j l‘—l’-dy+-‘-j lny(:hL)ay, |
2Jo ¥ 2 2 4,y 2N 2
2 |
Using the expansion
thl=1+4+2D (=) (y>0), (A.6)
2 T}

17



by carrying out integration term by term (term by term integration is al-

lowed here), we obtain

h=lndalicrnn+ 3 (B, A.7)

2 =1

Discarding terms smaller than O(e-x), we have

I, = L],.Ji. + l(c +In2) + 0(e™), (A.8)
2 = 2.

The second term in (A.5) is

Iy=— thlth“‘ld =1 = S N
20Jo 2 Pk 22 otb 2 dy - (A.9)
15 X
—_——— — )" —ry .1 _1
2 --Zl ( ) ‘L e th 2 dy, |
Using the expansion
= 241 ' '
th? (l) -1 (1) <. | (A.10)
2 Z—: (2s + D \2 <2,

and integrating term by term (it is not hard to prove that this is allowed),

(A.9) can be written as

15 1 N WS 1 I
PTG D @D PN ey Yo

S (A.11)
— e [(ad)*H + 25(ak)¥ + oo + (25 + 1)1}, ’

Neglecting 0(;%3) and small quantities less than O(e_x), we then have

- _1— 1 N-1 7 \u+2 (zt-ﬂ —_ 1)
i 2 :2-—": (2s+1) (2¢s + 2) + Z (T) [ Busa] +

= (2s + 1) (2s + 2) (4.12)
1 -
+o (szn’ ¢ )’
where By are the Bernoulli numbers, B, = %3 By = - %63 ees, For /1001

the third integral in (A.5),

1 (", (.42 A |
Iy= — 2 h-—(h‘-—-——)d |
} 215:t 2 ! y y y

it can be expressed in series form by the same method.

18



1 S » —nk [ nk
— 1 -_—
,z.“{ 2:(2: +1) .2-:{ (=re ,z.:. 2:(2: + 1) (2s—1) +
' (n2)? —_——.e - (n)* ] A
(25— 1) (25— 2) (25 — 1)1 (A.13)
1 -
—_— +o0 -k
2 2 5@ D :(2:+ iy + o (A-14)
- Summing up the above calculations, we obtain
F)=hL+L+L=1nt+lc+mz—1+
\ 2 x 2 .
(A.15)

K-1 2+ - | 11"'1! _
+ ,z_:.' (_) 1 (i: + 1)1()2:8-1- 2) ().W"’ ¢ l)’

1

1 |,
In writing this expression, the equality = §,'is used. There-
’ .Z{ kk+1)
fore, when n < 1:
F(p) = l']n - (C +h2-—1)+ (2% — 1) Bysal g+
2" " ?-:.’, EZ+n@+2)T T (A.16)

: -
+0G™, ),
This is the desired expansion.
By a completely similar method, we can obtain the expansion for G(n)

when n < 1:

' ?_7.,1_ 7 A (2¢1 — 1) | By, |
G === (Ct+hmz+ 1)+ AR
ROESTIR R 2 ¢ ) Z_Z 222+ 1) | (A.17)

+ 0™, e "),
Writing out the first several terms of (A.15) and (A.16), we have

Fp=nlilcctmz—1)+

-: 2 7 ( n l) " +'—36o’l +0(r],e ), (A.l8)
O -7 1 -

LAY 2‘“,'1 L2 (c+'“2+1)+52"’+°("," . (A.19)
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